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Abstract

A new incompressible Navier–Stokes numerical method is presented, capable of utilizing general hybrid meshes con-

taining all four types of three-dimensional elements: hexahedra, prisms, tetrahedra, and pyramids. It is an artificial com-

pressibility type of method using dual time stepping for time accuracy. The presented algorithms for (i) spatial

discretization, (ii) time integration, and (iii) parallel implementation are transparent to the different types of elements.

Further, the presence of grid interfaces between the multiple types of elements does not deteriorate accuracy of the solu-

tion. Efficient evaluation of the viscous terms is addressed via a special technique that avoids multiple spatial integration

of the same edge of the mesh. An upwind spatial discretization, and a central scheme with two different formulations of

the artificial dissipation operator are tested with the general hybrid meshes. Use of local blocks of hexahedra is eval-

uated in terms of accuracy and efficiency via simulations of high Reynolds number flows. Finally, the developed meth-

ods are implemented in parallel using partitioned general hybrid meshes and an efficient parallel communication scheme

to minimize CPU time.

� 2005 Elsevier Inc. All rights reserved.
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Reynolds number flows
1. Introduction

Numerical solution of the incompressible Navier–Stokes equations is of a great interest due to its

wide range of applications. The incompressible Navier–Stokes equations can be applied to low speed
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aerodynamics, bio-fluid flows, convective heat transfer problems, and hydrodynamics. A major obstacle to

numerical solution of the incompressible Navier–Stokes equations is the enforcement of the incompressibil-

ity requirement. Since there is no time-evolution term in the continuity equation, the standard time march-

ing schemes developed for compressible flow solvers cannot be applied. The continuity equation plays the

role of a constraint that the momentum equation has to satisfy.
Two main solution approaches for the incompressible Navier–Stokes equations are the pressure correc-

tion method and the artificial compressibility method [1]. In the pressure correction method, introduced by

Harlow and Welch [2], the pressure Poisson equation is being solved for a guessed velocity filed at each

iteration until the velocity field satisfies the continuity equation. Even though this method is matured

and successfully applied to a variety of applications [3,4], the solution accuracy and performance is highly

dependent on the performance of the pressure Poisson equation solver, and this can be very expensive for

time accurate simulation of complex turbulent flows. The method of artificial compressibility proposed by

Chorin [5] introduces a pseudo time-derivative of pressure into the continuity equation. This pseudo term
changes the mathematical character of the continuity equation from elliptic to hyperbolic by introducing

the artificial compressibility, and lets the system of equations be solved with a variety of time-marching

schemes developed for compressible flow solvers.

The square root of the artificial compressibility parameter
ffiffiffi
b

p
represents a speed of artificial pressure

wave and also affects the overall convergence rate. If b gets higher, then the artificial pressure wave travels

faster, however for an extremely fast wave speed (ideally, the wave speed goes to the infinity in incompress-

ible media), a large disparity in eigenvalues is introduced. This degrades the overall convergence and sta-

bility. Hence an optimal b (wave speed) can be found for a given problem.
The original form of the artificial Compressibility method was developed for steady-state problems. It

was extended to time accurate formulations first by Peyret [6]. Rogers and Kwak [7,8] applied the artificial

compressibility method to unsteady problems with an implicit line-relaxation procedure using the finite dif-

ference method. Belov [9] applied Jameson�s dual time-stepping scheme [10] to a time accurate formulation

of the artificial compressibility method. The dual time-stepping scheme basically solves a sequence of

steady-state problems in pseudo-time by using well established explicit multi-stage scheme. Hence, even

if the formulation is implicit in true-time, the actual time advancement is driven by the explicit multi-stage

scheme in pseudo-time. Lin [11] applied this method to adaptive unstructured meshes in two dimensions.
Anderson et al. [12] applied the artificial compressibility method using the flux-difference splitting scheme

on 2D unstructured meshes.

Even with the successful extension of the artificial compressibility method to the unsteady problems,

most of the previous work is on structured meshes [6–9] and applications on the unstructured meshes

are relatively recent and limited to two dimensions [11,12]. Furthermore, the applications of the time-accu-

rate artificial compressibility method on unstructured meshes are only with simplicial elements (triangles in

two dimensions, tetrahedra in three dimensions) and no result has been reported yet using general hybrid

meshes with all four types of elements in three dimensions (hexahedra, prisms, pyramids, and tetrahedra),
which is the main focus of the present work.

For viscous flow simulations, the superiority of the hybrid meshes over the conventional structured or

unstructured meshes with simplexes is advocated by many researchers [13,14]. The hybrid meshes can com-

bine good viscous layer resolving capability obtained from their structured elements, with the geometric flex-

ibility of the simplicial unstructured meshes. The merits of the hybrid meshes can be further enhanced by

introducing additional element types into the conventional hybrid meshes which typically consist of prisms

and tetrahedrons. For example, placing local hexahedra on the viscous and wake regions can result in signif-

icant savings in the number of elements. The inclusion of hexahedra necessitates use of pyramids as buffer ele-
ments between hexahedra and tetrahedra which complicates application of the numerical solution methods.

The current work presents one of the first artificial compressibility methods on general hybrid meshes con-

taining all four types of elements in three dimensions. The presented algorithms for (i) spatial discretization,
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(ii) time integration, and (iii) parallel implementation are transparent to the different types of elements

that are present in the general hybrid mesh. Further, the presence of the grid interfaces between the dif-

ferent types of elements does not deteriorate accuracy of the solution. Efficient evaluation of the viscous

terms is addressed via a special technique which avoids multiple spatial integrations on the edges of the

mesh.
In addition, three other numerical issues are examined in the present work. The first is accuracy of the

simulation with high aspect ratio cells at the wall surfaces. Such elements are typical of high Reynolds num-

ber flows considered here. The second is maintaining a relative large allowable time step size when the mesh

contains small-size elements in arbitrary regions of the domain. The third issue is comparison of solutions

between upwind and central schemes using hybrid meshes.

Parallel implementation of the developed flow solution method focuses on two aspects: (i) development

of a general grid data structure to handle partitioned meshes containing hexahedra, prisms, tetrahedral, and

pyramids, (ii) use of an appropriate parallel communication scheme to minimize CPU time.
2. Time accurate formulation of the artificial compressibility method

The incompressible Navier–Stokes equations are written in terms of mass and momentum conservation.

The time accurate formulation of the artificial compressibility method is introduced.
2.1. Governing equations

The conservation laws of mass and momentum for an arbitrarily closed control volume V with the

boundary S in integral form can be expressed as
d

dt

Z
V
q dV þ

Z
S
qV � n̂ dS ¼ 0; ð1Þ

d

dt

Z
V
qV dV þ

Z
S
qVV � n̂ dS ¼

Z
S
r � n̂ dS; ð2Þ
where VT = (u,v,w) is the velocity vector of the fluid, q is the density of the fluid, which is a constant for

incompressible flows, and n̂ is the unit normal vector to the control volume. No mesh motion or volumetric

force is considered for the current study. The stress tensor r is composed of the normal stress representing
hydrostatic pressure p and the shear stress sij:
rij ¼ �pdij þ sij.
For Newtonian fluid under incompressible flow condition, the shear stress tensor is expressed as
sij ¼ l
oui
oxj

þ ouj
oxi

� �
;

where l is dynamic viscosity, and ui is the ith component of the velocity vector. The conservation laws are

non-dimensionalized by using the relations with the reference quantities as below,
x� ¼ x
D
; u� ¼ u

U1
; t� ¼ t

D=U1
; p� ¼ p � p1

qU 2
1

;

where x*, u*, t* and p* are the non-dimensionalized scales of length, velocity, time and pressure respectively,

and D is characteristic length scale which is diameter of the circular cylinder, and U1 is magnitude of the
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velocity of free stream and p1 is the pressure of free stream. Substituting the above relations into the con-

servation laws and dropping * yield the non-dimensionalized form of the governing equations. The non-

dimensionalized incompressible Navier–Stokes equations, which consist of the continuity equation and

three momentum equations for each coordinate direction, are expressed as a system of equations in the inte-

gral form as shown in the following equation:
d

dt

Z
V
U dV þ

Z
S

FÎiþGÎjþHIk̂
� �

� n̂ dS ¼
Z
S

FV îþGV ĵþHVk̂
� �

� n̂ dS; ð3Þ
where U is the vector of conserved flow properties, FÎiþGÎjþHIk̂ is the convective flux vector,

FV îþGV ĵþHVk̂ is the viscous flux vector, and n̂ is the outward unit normal vector to the control volume

V.

Components of the vectors are defined as follows:
U ¼

1

u

v

w

8>>><
>>>:

9>>>=
>>>;
; FI ¼

u

uuþ p

vu

wu

8>>><
>>>:

9>>>=
>>>;
; GI ¼

v

uv

vvþ p

wv

8>>><
>>>:

9>>>=
>>>;
; HI ¼

w

uw

vw

wwþ p

8>>><
>>>:

9>>>=
>>>;
;

FV ¼ 1

Re

0

2 ou
ox

ou
oy þ ov

ox

ou
oz þ ow

ox

8>>>><
>>>>:

9>>>>=
>>>>;
; GV ¼ 1

Re

0
ov
ox þ ou

oy

2 ov
oy

ov
oz þ ow

oy

8>>>><
>>>>:

9>>>>=
>>>>;
; HV ¼ 1

Re

0
ow
ox þ ou

oz
ow
oy þ ov

oz

2 ow
oz

8>>>><
>>>>:

9>>>>=
>>>>;
;

where U is the vector containing the conservation variables, FI, GI and HI represent the convective flux vec-

tors, and FV, GV and HV are the viscous flux vectors, and Re ¼ U1D
m is the Reynolds number and m is the

kinematic viscosity of the fluid defined as m ¼ l
q.

2.2. Spalart–Allmaras turbulence model

Spalart and Allmaras [15] introduced a one-equation model originally developed for aerodynamic appli-

cations. A single model transport equation is solved for the turbulent viscosity (mt) and it has been shown

that the model is quite successful especially for drag prediction in aerodynamic applications [16].

The Spalart–Allmaras eddy viscosity transport equation in differential form is expressed as follows:
o~m
ot

þ o

oxj
ð~mujÞ ¼ Cb1

~S~mþ 1

r
o

oxj
mþ ~mð Þ o~m

oxj

� �
þ Cb2

o~m
oxj

o~m
oxj

� 	
� Cw1fw

~m
d

� �2

. ð4Þ
The complete model equation includes trip functions which are used for modeling laminar to turbulent

transition at a pre-specified point, but the current turbulent simulation assumes that the entire flow field

is affected by the turbulence model. Hence, no such trip functions are used. The terms on the left-hand side

of Eq. (4) are the unsteady term and the convective flux term in conservative form. The terms on the right-

hand side are the production term, the diffusive flux term, and the destruction term which includes the dis-
tance d to the nearest viscous wall as a variable. In order to determine the eddy viscosity, first the transport

equation has to be solved for the working variable ~m and then it is converted to eddy viscosity mt by the

following formula:
mt ¼ fv1~m;
where fv1 ¼ v3

v3þC3
v1
, Cv1 = 7.1, v ¼ ~m

mL
and mL is the laminar kinematic viscosity. For detailed definition of the

constants and functions used in the model equation, one can refer to Spalart and Allmaras [15].
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2.3. Time-accurate formulation

The artificial compressibility method is presented in a time-accurate formulation. The original form of

artificial compressibility method introduced by Chorin [5] was in the steady-state formulation where no true

time-derivative term was included. Later the method was extended to time-accurate formulations applied to
unsteady problems [6–9]. The present time accurate formulation was first presented by Belov [9] by using

the dual time-stepping algorithm introduced by Jameson [10].
P
d

dt�

Z
V
Q dV þ d

dt

Z
V
U dV þ

Z
S

FÎiþGÎjþHIk̂
� �

� n̂ dS ¼
Z
S

FV îþGV ĵþHVk̂
� �

� n̂ dS. ð5Þ
A pseudo time-derivative term (time derivative with respect to pseudo-time, t*) is added not only to the con-

tinuity equation but also to the momentum equations. Hence, the continuity equation has a pseudo time-

derivative of the pressure and the momentum equations have both true time-derivatives and the added

pseudo time-derivatives of the velocity components.
The vector Q is containing primitive flow variables which are unknowns for the system of equations, and

P is a diagonal matrix containing the artificial compressibility parameter b acting as a pre-conditioner for

the continuity equation.
P ¼

1=b 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; Q ¼

p

u

v

w

8>>><
>>>:

9>>>=
>>>;
. ð6Þ
The artificial compressibility parameter b controls the speed of artificial pressure wave and also affects the

overall convergence rate. Depending on the preconditioning method employed, more complex form of the

preconditioning matrix can be used including variable b which is scaled by the local flow velocity [17,18].

More recently, Malan et al. [19] included the viscous effect into the artificial compressibility parameter b.
The main idea of the variable b is minimizing the disparity of the eigenvalues by scaling the artificial speed

of sound which is a function of b. However, numerous results have been reported that, in general, a con-

stant b is the best for the overall convergence rate [11,20]. For present study, a globally constant b is used in

the orders of O(1) � O(100), and b = 100 is found to be the optimal for the overall convergence of the cases
considered here.

In order to couple the turbulence model equation with the mean flow equations, the time-stepping

scheme of the turbulence equation is presented in a consistent form with that of the mean flow equation.

A dual time-stepping time-accurate formulation of the turbulence equation is given by
o

ot�

Z
V
~m dV þ R�

SAð~mÞ ¼ 0; ð7Þ
where t* refers to pseudo-time and R�
SA refers to the integral form of the Spalart–Allmaras equation defined

by
R�
SAð~mÞ ¼

o

ot

Z
V
~m dV þ

I
S

F ~m
c � F ~m

v


 �
dS �

Z
V
Q~m dV ; ð8Þ
where the first term in the right-hand side is the unsteady term, F ~m
c and F ~m

v are the convective and viscous
flux vectors, and Q~m is the source term which is including the production and destruction terms.

Once the unsteady residual is constructed by using the temporal and spatial discretization schemes, the

steady-state problem in pseudo-time is solved for the eddy viscosity at the next time step. The pseudo tran-

sient problems for the turbulence model equation as expressed in Eq. (7) can be coupled with that of the
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mean flow equation (5). The two sets of equations are coupled and solved simultaneously, hence the flow

field and eddy viscosity are strongly coupled and converge concurrently.

Both the true time-derivatives and pseudo time-derivatives need their own time integrators. Hence the

time advancement scheme of the current formulation requires the dual time-stepping scheme, which is solv-

ing a steady-state problem in pseudo-time (t*) at each true time step. The discretization schemes of the true
and pseudo time-derivatives are presented in Section 4.
3. Spatial discretization with general hybrid meshes

A conservative, finite-volume discretization scheme is used for solving the incompressible Navier–Stokes

equations. A node-centered median dual volume is used for spatial discretization. An edge-based algorithm

is used for the computation of the numerical fluxes [21]. For the viscous flux evaluation at an edge, another
conceptual finite volume composed of its neighbor cells is used for the velocity gradient computation. A

new computationally efficient algorithm is presented for the computation of the velocity gradients. This

algorithm is composed of the first step of a face-wise loop to evaluate the surface integrals of edge-duals.

The second step is an edge-wise operation for the final computation of velocity gradients and viscous fluxes.

The employed node-centered median dual control volume is shown in Fig. 1. The region indicated by

dashed lines around node i represents node-duals in two dimensions. The node-dual is constructed by con-

necting lines defined by edge midpoints and centroids of the cells sharing the center node i. The L and R in

Fig. 1 represent left and right sides of the node-dual boundary assuming that the edge is directed outward
with respect to the node-dual i. In three dimensions as depicted in Fig. 2, the node dual is constructed by

connecting faces (instead of lines in two dimensions) defined by edge midpoints, cell centers and face centers

sharing the common node n.
i L R

i
L R

(a)

(b)

Fig. 1. Node-duals in two dimensions: (a) node-dual with mixed cells, (b) node-dual with triangular cells.



n

n

n n

(a) (b)

(c) (d)

Fig. 2. Contributions to the dual volume of node n from different types of elements in three dimensions: (a) hexahedron, (b) prism,

(c) pyramid, and (d) tetrahedron.
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3.1. Convective flux

The convective flux for the node-dual i in discrete form can be expressed as
I
Si

ðFIiþGIjþHIkÞ � n dS �
XJ i
j¼1

ðFÞjDSj ¼ CiðQÞ; ð9Þ
where ðFÞj ¼ FInx þGIny þHInz is the numerical flux evaluated at the mid-point of edge j, Ji is the number
of edges connected to node i and nx, ny, and nz are the components of the outward unit normal vector of the

node-dual boundary, and DSj is the area of the node-dual boundary associated with edge j . Ci(Q) is the

summation of the numerical convective fluxes through the control volume boundaries.

Both the central difference and upwind schemes are used for the convective flux evaluation. For the cen-

tral difference scheme, the numerical flux is evaluated at the node-dual boundary by the arithmetic averag-

ing of the fluxes at the two end nodes as shown in Eq. (10).
ðFcentralÞj ¼
1

2
ðFðQiÞ þFðQjÞÞ. ð10Þ
Since the central difference scheme is susceptible for the odd–even mode decoupling, an additional artificial

dissipation term is needed. Two different artificial dissipation models are presented and evaluated in Sec-

tions 3.3 and 3.4.

Instead of the central scheme with the supplementary artificial dissipation term, an upwind scheme can

be used by evaluating the numerical fluxes using Roe�s approximate Riemann solver [22] as below,
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Fupwind ¼
1

2
ðFðQLÞ þFðQRÞÞ þ

1

2
jÂðQR;QLÞjðQL �QRÞ; ð11Þ
where the FðQLÞ and FðQRÞ are the convective flux vectors from the solutions reconstructed on the left
(QL) and right (QR) sides of control volume boundary. These solutions are reconstructed by using the Tay-

lor series expansions about the two end nodes to the edge mid-point, which requires pre-computation of

nodal gradients of the solutions. The Roe�s matrix jÂj is defined as
jÂj ¼ RjK̂jR�1;
where the R is the right eigenvector matrix of the flux Jacobian, R�1 is its inverse, and jK̂j is diagonal matrix

whose components are absolute values of eigenvalues. As shown by Taylor and Whitfield [23], each com-

ponent of the Roe�s matrix is evaluated by arithmetic averaging of the left and right states, which satisfies

the conditions for Roe�s matrix. A non-singular eigensystem of the Roe�s matrix was reported by Anderson

et al. [12] in two dimensions, and by Kim [24] in three dimensions.

When the first order upwind scheme is employed, the solutions at the left and right sides of the control

volume boundary can be chosen simply as the solutions at the two end nodes. However, for high order up-

wind schemes, the solutions at the control volume boundary must be reconstructed by using the Taylor ser-
ies expansions about the two end nodes. The solution reconstruction from the two end nodes to the edge

mid-point which represents the node-dual boundary can be expressed as
QL ¼ Qi þ
1

2
ðrQÞi � Drij; ð12Þ

QR ¼ Qj �
1

2
ðrQÞj � Drij; ð13Þ
where the Drij is the distance vector from node i to j, and $Q is the nodal gradient of the solution which is

evaluated by least-square procedure [25]. Gram-Schmidt process is used for solving the least-square prob-
lem (Ax = b) by decomposing the coefficient matrix A into a product of an orthogonal matrix Q and an

upper (right) triangular matrix R. This Gram-Schmidt process allows pre-computation of all the weights

only from the geometric information. Hence, the actual computation of the nodal gradients using the

least-square procedure can be implemented just by a single loop over edges. For more details, readers

can refer to Anderson and Bonhaus [25] for two dimensions and Haselbacher and Blazek [26] for three

dimensions.

The surface integral in discrete form as expressed in Eq. (9) is presented in the node-wise fashion by vis-

iting each node and accumulating the contributions from edges sharing the node. However, the actual
implementation is in edge-wise manner by visiting each edge only once, computing the flux contribution,

and sending positive contribution to the node inside and negative contribution to the node outside depend-

ing on the direction of the edge.

Since this convective flux computation is purely in edge-wise fashion, all the nodes get the complete con-

tribution of the convective flux after a single edge-loop. This edge-wise algorithm does not require any

information about cell topology, so the algorithm is suitable especially for the general hybrid meshes con-

sidered here.
3.2. Viscous flux

In order to evaluate the viscous fluxes through the control volume boundaries, the gradients of velocity

components are needed to be pre-computed at each edge. For this velocity gradient computation, another

conceptual finite volume called edge-dual is constructed. The edge-dual is composed of the neighbor cells
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Fig. 3. Edge-duals in two dimensions for computation of the first order spatial derivatives.
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sharing a common edge. Various kinds of edge-duals encountered in hybrid meshes are delineated in Fig. 3

for two dimensions and in Fig. 4 for three dimensions.

For the computation of the velocity gradients at each edge, the divergence theorem is used and the sur-

face integrals along edge-dual boundaries are performed. For example, computing volume averaged value

of ou
ox using an edge-dual can be expressed as
ou
ox

� �
e

¼ 1

V e

I
e

unx dS; ð14Þ
where Ve is the volume of an edge-dual .

This edge-dual approach has been advocated by other researchers [3,27] because it is less susceptible to

the solution wiggles and yields more compact stencils than other methods. However, visiting edge-duals and

performing surface integrals over various kinds of edge-duals introduces extra complexity.

This surface integral over the edge-duals as expressed in Eq. (14) (visiting an edge-dual and performing

the surface integral) has two major drawbacks. First, it needs additional connectivity information of edge-
to-faces for each edge-dual. In two dimensions, an edge-dual is composed of four to six edges (Fig. 3), so

each edge has to store its edge-dual connectivity information of four to six integers of memory. In three

dimensions, this edge-to-faces connectivity information reaches up to 18 integers (faces) for an edge in pris-

matic region and 16 integers (faces) for an edge in hexahedral region. Second, probably more serious than

the first, it requires redundant visits of each element face regarding the evaluation of the surface integral,

because a surface typically belongs to multiple edge-duals. In two dimensions, the number of visits of an

edge is four if the edge is in triangular region, five if the edge is on the interface of triangular and quadri-

lateral regions, and six if the edge is in quadrilateral region. These redundant visits of a face become more
severe in three dimensions. For a face in hexahedral region, the number of visits of the face is approximately

16, which can be very expensive.

A new computationally efficient algorithm is now presented for the velocity gradient computation

using the edge-duals. In the algorithm, as depicted in Fig. 5 in two dimensions, the surface integrals over

the edge-duals are performed in two steps. At the first step, cell-wise surface integrals are computed via a
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e

(b)

e

(a)

Fig. 4. Edge-duals in three dimensions for computation of the first order spatial derivatives: (a) edge-dual composed of prism, (b) edge-

dual composed of tetrahedra, (c) edge-dual composed of mixed elements.

1

2

e

Fig. 5. Cell-wise surface integrals for velocity gradient computations using edge-duals.
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single edge-loop. At the second step, the cell-wise surface integrals are gathered at the common edge and

divided by the sum of the volumes of neighbor cells which compose the edge-dual volume. The cell-wise

surface integrals are delineated in Fig. 5, and final computation of ou
ox at the common edge is presented in

Eq. (15).
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ou
ox

� �
e

¼
H
1
unx dS þ

H
2
unx dS

V 1 þ V 2

; ð15Þ
where V1 and V2 are the volumes of triangular and quadrilateral cells in Fig. 5. This cell-wise surface inte-
grals which are represented with dashed lines in Fig. 5 can be implemented via a single edge-loop. In three

dimensions, this edge-loop is replaced with a face-loop because cells in three dimensions are delimited with

faces. At the second loop of edges, the pre-computed surface integrals from the neighbor cells are gathered

at the common edge. By the summation of the surface integrals from neighbor cells, the contributions from

the common faces (edges in two dimensions) which are inside the edge-dual automatically cancel out, and

the summation recovers the net surface integral of edge-dual boundary. Finally, the division of the surface

integral by the edge-dual volume yields the edge-dual averaged velocity gradients.

The edge-dual approach can be interpreted as the computation of velocity gradients by volume weighted
averaging of velocity gradients at the neighbor cells as shown in the following equation:
ou
ox

� �
e

¼ 1

V 1

I
1

unx dS

0
@

1
Aw1 þ

1

V 2

I
2

unx dS

0
@

1
Aw2; ð16Þ
where w1 ¼ V 1

V 1þV 2
and w2 ¼ V 2

V 1þV 2
are the weights for the neighbor cells. In the end, all the velocity gradient

computations expressed in Eqs. (14)–(16) give identical result.

Since each cell has to store these surface integrals from the first loop, an extra memory space is needed
for each cell. This extra cell-wise memory space is for four real variables in two dimensions and nine real

variables in three dimensions, and each of them corresponds to a velocity gradient. Additionally, for the

second loop of edges, connectivity information of edge-to-(neighbor) cells should be pre-constructed for

every edge. This edge-to-cells information requires the memory space of two integers in two dimensions

(two neighbor cells for an interior edge in 2D). In three dimensions, the memory space requirement of

edge-to-cells information is not fixed and varies largely depending on the types of neighbor cells. Overall,

the major saving from the proposed algorithm comes from the CPU time, and the memory requirement of

the new algorithm of Eq. (15) is comparable to the conventional method of Eq. (14).
Once the velocity gradients are computed at all edges, the same edge-wise operation is used for the vis-

cous flux evaluation at node i as shown in the following equation:
I
Si

ðFViþGVjþHVkÞ � n dS �
XJ i
j¼1

ðFVÞjDSj ¼ ViðQÞ; ð17Þ
where ðFVÞj ¼ FVnx þGVny þHVnz is the viscous flux evaluated at the edge j, Ji is number of edges con-

nected to the node i, DSj is the area of node-dual boundary associated with the jth edge, and Vi(Q) is the

final contribution of the viscous fluxes at node i. This edge-wise operation of viscous flux evaluation can be

combined with the second step of the algorithm which evaluates the velocity gradients.
3.3. Artificial dissipation

Central difference schemes allow high frequency oscillations of the solution. In order to suppress this

high frequency oscillation, a special dissipation term is added.

The conventional fourth-order difference scalar smoothing for a node i can be expressed as below
DiðQÞ ¼ �
XJ i
j¼1

r4qijðdxxQj � dxxQiÞ; ð18Þ
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where Ji is the number of nodes connected to the node i by its neighbor edges, r4 is the coefficient for

fourth-order scalar dissipation which is determined by empiricism, qij is the estimate of spectral radius

associated with the jth neighbor edge, and dxx is the undivided second order difference operator defined

as below
dxxQi ¼
XJ i
j¼1

ðQj �QiÞ. ð19Þ
The estimate of spectral radius scaled with the node-dual boundary associated with the edge j is defined as
qij ¼ ðjunj þ cÞDSj; ð20Þ
where the velocity normal to the node dual boundary is
un ¼ unx þ vny þ wnz
and artificial speed of sound defined as below
c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2n þ b

q
.

The spectral radius at each edge is scaled with the area of node-dual boundary DSj associated with the
edge j, and the normal velocity un is associated with the direction normal to the node-dual boundary

associated with the jth edge. This scaling is often called individual eigenvalue scaling [28] and has been

reported that it is adequate for the meshes with aspect ratios up to 10 [29]. It is found that, for the

present 2D simulations, the current individual eigenvalue scaling shown in Eq. (20) can be used with

cells of aspect ratios at least up to 50. The artificial dissipation coefficient of r4 = 0.005 seems adequate

for the 2D simulations.

By scaling the spectral radius with DSj, the actual contribution of artificial dissipation is dimensionally

consistent with the surface integrals of convective and viscous flux terms. Ideally, on a uniform mesh, the
final contribution of artificial dissipation when it is divided by the node-dual volume is
1

V i
DiðQÞ � r4OðDxÞ3r4Q.
Therefore, the added artificial dissipation which is a third-order term should not affect the order of spatial

accuracy of the central difference scheme which is second. However, on meshes with high aspect ratios, the

artificial dissipation may not be scaled properly [28–31]. Furthermore, a severe oscillation on hybrid meshes

has been reported by Haselbacher and Blazek [26] when the explicit Runge–Kutta scheme is used in con-

junction with the central scheme. Haselbacher and Blazek proposed a modified artificial dissipation scheme

as expressed below
DiðQÞ ¼ �
XJ i
j¼1

r4qijðQL �QRÞ ð21Þ
based on the difference of the reconstructed solutions on the left and the right side of control volume

boundary (QL and QR). A Taylor series expansion is used for the solution reconstruction at the node-dual

boundary as presented in Eqs. (12) and (13). Note that the artificial dissipation model expressed in Eq. (21)

results in a second-order accurate dissipation scheme. If the left and right state is simply chosen as the nodal

state on either side of the boundary, instead of using the Taylor series expansions, the above dissipation

scheme gives a first-order accurate scheme.
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3.4. Comparisons of dissipation models with a general hybrid mesh

Central differences with the two different artificial dissipation models as well as Roe�s upwind scheme are

tested for the investigation of their applicability to the general hybrid meshes.
3.4.1. Generation of general hybrid meshes

The hybrid grid generator consists of two major parts: (1) the prisms/hexahedra generator, which is an

algebraic, marching-type technique, and (2) the tetrahedra generator which is an advancing front type of

method. An unstructured triangular/quadrilateral grid is employed as the starting surface to generate a pris-

matic/hexahedral mesh. This grid, covering the body surface, is marched away from the body in distinct

steps, resulting in generation of semi-structured prismatic layers as well as hexahedra in the marching direc-

tion. The rest of the domain is covered with tetrahedra. Finally, pyramids are employed at the interfaces

between the hexahedral and tetrahedral regions. Details of the two technique can be found in [13].
3.4.2. Performance comparison of dissipation schemes

The general hybrid mesh used for the current comparison of artificial dissipation models is displayed in

Fig. 6. It includes local hexahedra on the frontal viscous region of the cylinder, prisms in its rear half,

prisms at the interface between the hexahedral and tetrahedral regions, and tetrahedrons for the rest.

The comparison between the central difference schemes with the conventional artificial dissipation and

the modified artificial dissipation based on the solution reconstructions is presented. The second order up-

wind scheme result is also included. The pressure contours obtained by using the aforementioned schemes
are displayed in Fig. 7.

First of all, the conventional dissipation model shows severe oscillation in the pressure contours. Increas-

ing the coefficient (r4) for the dissipation model cannot be a remedy of this problem, because a larger r4
Fig. 6. General hybrid mesh-1 (GHM-1) containing hexahedra in the frontal region of the cylinder.



Fig. 7. Comparison of pressure contours obtained with different dissipation models: (a) corresponds to the conventional scalar

dissipation model (r4 = 0.002), (b) to the modified dissipation model of Haselbacher and Blazek, and (c) to the implicit dissipation by

upwind scheme. The pressure contours on the plane cuts are obtained at the same time within a shedding cycle. Re = 150.
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only resulted in the decay of vortex shedding without suppressing of the oscillations in pressure field. This

indicates that the conventional dissipation scheme is incapable of suppressing the solution oscillations on
general hybrid meshes. Furthermore, as pointed by Haselbacher and Blazek [26], this smoothing model

shows a severe stability problem on hybrid meshes when it is driven by the explicit Runge–Kutta time-

stepping scheme which is used in the current study.

The modified smoothing model of Haselbacher and Blazek [26] based on the differences of the recon-

structed solutions (Eq. (21)) is tested, and then compared with the second order upwind scheme by using

Roe�s flux-difference splitting. The Haselbacher and Blazek�s scheme shows superior ability of suppressing

the oscillations to the conventional dissipation scheme. The pressure contours are similar to the ones

yielded by the upwind scheme.
The effect of artificial dissipation models on skin friction distribution on the surface of the cylinder is

presented in Fig. 8. In a similar fashion as the pressure distribution, the conventional smoothing shows

oscillations in Cf in the rear half of the cylinder, where Haselbacher and Blazek�s scheme and upwind

scheme show smooth variation of it.

The computational cost of the modified smoothing is slightly higher than the conventional smoothing due

to the solution reconstruction step for each edge. However, the modified smoothing is still less expensive than

the upwind scheme, because the upwind scheme requires the evaluation of Roe�s matrix at each edge.

In general, in the regions of highly stretched cells and anisotropic support of the edges (e.g., along the
interfaces of prisms/hexahedra and tetrahedrons/pyramids, where only a single edge resides inside of the
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4. Temporal discretization of the time accurate artificial compressibility method

4.1. Dual time-stepping scheme

The present time-accurate formulation of the artificial compressibility method includes two different time
evolution terms: one in true (physical) time t and the other in pseudo-time t* as indicated in Eq. (5). The

true time-derivative term is discretized by using a second order backward difference formula, while a

Runge–Kutta multistage scheme is employed for the pseudo time-derivative term. For each marching step

in true time, the pseudo time marching problem is solved to convergence.

Evaluating all the flux contributions to the finite control volume Vi and adding the supplementary arti-

ficial dissipation term, if a central difference scheme is employed, yields the dual time-stepping time accurate

formulation as

For node i, Eq. (5) is written as follows:
P
d

dt�
ðQiV iÞ þ

d

dt
ðUiV iÞ þ CiðQÞ ¼ ViðQÞ þDiðQÞ; ð22Þ
where P is the preconditioning matrix previously defined in Eq. (6), Ci(Q) is the convective flux, Vi(Q) is the

viscous flux, and Di(Q) is the added artificial dissipation for the case of the central spatial discretization.
The system of equations can be further written as
d

dt�
ðQiV iÞ þ P�1R�

i ðQÞ ¼ 0 ð23Þ
by introducing the unsteady residual R�
i ðQÞ as defined below
R�
i ðQÞ ¼ 3

2Dt
Unþ1

i V nþ1
i


 �
� 2

Dt
Un

i V
n
i


 �
þ 1

2Dt
Un�1

i V n�1
i


 �
þ RiðQÞ.
The unsteady residual R�
i ðQÞ is the sum of the true time-derivative term discretized by using the second or-

der backward difference formula, and the steady residual which includes all the flux terms, as shown below
RiðQÞ ¼ CiðQÞ � ViðQÞ �DiðQÞ.

In order to advance a time step from the current time tn to the next time tn+1, the unsteady residual R*(Q) is

first constructed by discretizing the true time-derivative with the implicit backward difference formula, and

then the steady-state problem shown in Eq. (23) is solved in pseudo-time. Once the steady-state in pseudo-

time is reached, the solution has been advanced to the next time step.

The dual time-stepping scheme is driven by the time integration scheme for the pseudo steady-state prob-
lem. Therefore, the overall performance of the dual time-stepping scheme is highly dependent on the effi-

ciency of the steady-state solver in pseudo-time.

A 5-stage Runge–Kutta scheme is used for solving the steady-state problem in pseudo-time
Qð0Þ ¼ Qk

..

.

QðlÞ ¼ Qð0Þ � alDt�i
1
V i
P�1R�

i ðQ
ðl�1ÞÞ

..

.

Qkþ1 ¼ Qð5Þ

ð24Þ
where a1, . . .,a5 are optimized coefficients for accelerating the convergence to the steady state, and Dt�i is
local pseudo-time step for node i. The marching from stage 1 to stage k + 1 will be called subiteration in
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the following. If the central scheme is employed, the diffusive fluxes (viscous flux and artificial dissipation)

are evaluated only at the odd stages, and combinations of diffusive terms at previous stages are used at even

stages. This multistage scheme is referred to as hybrid multi-stage compared to the scheme of evaluating all

the fluxes at every stage. A more detailed description of the hybrid multistage scheme for central differences

is presented in [29]. For the upwind scheme, all the fluxes are evaluated at every stage.
The dual-time stepping scheme has two different time steps: true time step and pseudo-time step. The

true time-stepping is discretized by using the A-stable second order backward difference scheme. This

scheme is stable regardless of the time step size. For pseudo time-stepping scheme, which is driven by an

explicit multistage scheme, needs a time step calculation formula. Current local-pseudo time step is calcu-

lated by using both convective limit and diffusion limit which is originally proposed by Kallinderis [32].

The local-pseudo time step for the node i is presented as
Dt�i ¼ x
V i

Ax þ Ay þ Az þ D
; ð25Þ
where
Ax ¼ ðjuj þ cxÞSx; Ay ¼ ðjvj þ cyÞSy ; Az ¼ ðjwj þ czÞSz
and
D ¼ 2
1

Re
V i

Sx þ Sy þ Sz
.

The artificial speeds of sound in each coordinate direction are
cx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ b

p
; cy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ b

p
; cz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b

p

and the projected areas of node-dual volume are given as
Sx ¼
1

2

X
e

jSxje; Sy ¼
1

2

X
e

jSy je; Sz ¼
1

2

X
e

jSzje;
where Sx, Sy, and Sz are the components of area normal vector.

The weighting factor x may be considered as the local Courant number of the CFL (Courant, Fried-

richs, and Lewy) condition, and a value of 1–3 is used.

Small size cells can be encountered not only in the viscous region but also in the rest of the domain.

These small cells may inhibit the overall convergence of the pseudo-time marching, as well as of the true
time procedure for cases of explicit scheme. The current time-marching scheme is tested on a mesh contain-

ing small size cells randomly located. Fig. 9 shows the comparison of the original mesh and locally redis-

tributed mesh, where small cells appear in the wake region.

A comparison of the two different mesh simulations, which are obtained by using exactly the same num-

ber of sub-iteration, is presented in Fig. 10. As indicated in Fig. 10, these small cells in the wake region

deteriorate the convergence at each time step, and this results in the growing phase error in the drag

and lift responses. This tells that the current dual-time stepping scheme is very sensitive to the pseudo-time

stepping, and the temporal accuracy can be assured only if the pseudo-transient problem is converged
under adequate tolerance.
5. Time step and mesh convergence

Temporal and spatial accuracies are verified by using time step and mesh refinement. Formal second or-

der accuracy of the three point backward difference formula is verified by time step refinement study. Due



Fig. 9. Two-dimensional hybrid meshes with and without small cells in the wake region: (a) for the mesh with regular cells and (b) for

the mesh containing locally in three places.
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to the computational cost of the three-dimensional simulations, the time step refinement study is performed

in two dimensions with the same time integration scheme as in three dimensions. The mesh convergence

study is performed in three dimensions by using a set of three successively refined meshes for flows around

a sphere.

5.1. Time step convergence study

Three successively halved time steps (Dt = 0.4,0.2, 0.1) are employed and the resulting shedding periods
are compared. The two-dimensional hybrid mesh used for this time step refinement study is displayed in

Fig. 9(a). The CD and CL histories with Re = 150 corresponding to the three different time steps are dis-

played in Fig. 11.

The shedding periods averaged over the last three shedding cycles are listed in Table 1 along with the

corresponding time steps used. The order of convergence for the shedding period is estimated as shown

in Eq. (26).
log2
ðT ÞDt¼0.4 � ðT ÞDt¼0.2
ðT ÞDt¼0.2 � ðT ÞDt¼0.1

� �
¼ 2.0. ð26Þ
The result of the current simulation is compared with other reported computational and experimental re-

sults. The hybrid mesh shown in Fig. 9(a) is used for this comparison study with time step of Dt = 0.1. The

CD, CL, and St are chosen for the parameters of comparison and the details are presented in Table 2.

The results of Belov [9] and Lin [11] are obtained with a computation based on the artificial compress-

ibility method in two dimensions. Belov used a structured polar mesh (257 · 257 nodes), and Lin used an
unstructured mesh only with triangles (128 nodes on wall, and 42,200 nodes total). Overall, the current sim-

ulation result agrees well with the compared computational and experimental results, and small variances in

the results may be attributed to several factors, such as the different types of mesh and/or the amount of

artificial dissipation introduced.

5.2. Mesh convergence study

A set of three successively refined meshes around a sphere are constructed for the mesh convergence
study. A triangular surface mesh over the sphere is first generated and the surface mesh is extruded along





Fig. 11. Time step refinement study in two dimensions. Three-point backward difference formula is used for the true time-stepping.

Flow around a circular cylinder with Re = 150.

Table 1

Shedding periods averaged over the last three cycles

True time step Dt Shedding period, T

0.1 5.30

0.2 5.40

0.4 5.80

Flow around a circular cylinder with Re = 150.
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5.2.1. Analytic velocity function test

The divergence operator is chosen to mimic the convective flux computation and the laplacian operator

is chosen for emulating the viscous flux evaluation. The numerical and exact solutions are compared to

show the accuracy of the present spatial discretization scheme. The analytic velocity field prescribed is



Table 2

Comparisons with other computational and experimental results

CD CL St

Hybrid mesh 1.413 ± 0.03 ±0.586 0.188

Belov et al. [9] 1.168 ± 0.025 ±0.486 0.182

Lin [11] 1.166 ± 0.023 ±0.477 0.182

Experiment-1 [33] N.A. N.A. 0.183

Experiment-2 [34] 1.328 N.A. N.A.

Hybrid mesh result is from the current 2D simulation with the time step of Dt = 0.1. Belov�s result is obtained with a 2D structured polar

mesh, and Lin�s result is obtained with 2D unstructured mesh with triangles. Experiment-2 is for Re = 152, and the rest are for Re = 150.

Fig. 12. Three levels of sphere mesh resolution used for the mesh convergence study: (a) coarse (162 · 33 nodes, 320 · 32 elements),

(b) medium (642 · 65 nodes, 1280 · 64 elements), and (c) fine (2562 · 129 nodes, 5120 · 128 elements).

Table 3

Characteristics of the initial (coarse), once refined (medium) and twice refined (fine) sphere meshes

Nodes Elements Initial spacing normal to wall, Dr0

Coarse 162 · 33 320 · 32 0.01

Medium 642 · 65 1280 · 64 0.005

Fine 2562 · 129 5120 · 128 0.0025

Y. Kallinderis, H.T. Ahn / Journal of Computational Physics 210 (2005) 75–108 95
U ¼ sinðxÞiþ cosðyÞjþ sinðzÞk. ð27Þ

Since the exact values of the divergence and laplacian are known for the analytic velocity filed, the errors

are computed by
divergence ErrorDr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNI
i¼1jðr �UÞDr � ðr �UÞexactj

2

NI

s
;

laplacian ErrorDr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNI
i¼1kðr2UÞDr � ðr2UÞexactk

2

NI

s
;





Table 5

Drag coefficients using the initial (coarse), once (medium) and twice (fine) refined sphere meshes, Re = 100

CD

Coarse 1.069

Medium 1.081

Fine 1.084
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As shown in the above extrapolation, the current discretization scheme yields second order accuracy for the

drag coefficient CD.
6. Utilization of local hexahedra within hybrid meshes

The major distinction of the general hybrid meshes from the conventional hybrid meshes is the inclusion

of local hexahedra, possibly unstructured. Inclusion of hexahedra yields certain advantages. The hexahe-

dron can express multi-directional anisotropy. Besides clustering along the normal direction to the wall,

it can also cluster along the lateral directions. Hence these hexahedral layers are suitable for the viscous wall

with severe curvature, such as the leading edge of a wing or the frontal area of a cylinder. Second, the hexa-

hedrons can also be used in the regions where relatively isotropic cells are required, such as the wake region

of a bluff body. In either case, the inclusion of the local hexahedra can yield savings in the number of ele-

ments of the meshes.
To take advantage of the merits of local hexahedra, the general hybrid mesh 1 as shown in Fig. 6 is mod-

ified with inclusion of local hexahedra in the wake region of the cylinder, as well. The resulting mesh is

shown in Fig. 14. This mesh will be termed general hybrid mesh-2 (GHM-2) in the following. The first mesh

of Fig. 6 contains local hexahedra only in the frontal area of the cylinder.
Fig. 14. General hybrid mesh-2 (GHM-2) containing hexahedra in the wake region as well as in the frontal region of the cylinder.

L/D = 5.
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The purpose of this simulation is (i) to demonstrate the generality of the developed numerical scheme to

treat meshes with four different types of elements and (ii) to explore potential savings in computing re-

sources by using local hexahedra in the wake.

6.1. Local hexahedra evaluation

One of the major advantages of using hybrid meshes is their lower connectivity as compared to the

meshes with simplexes (triangles in two dimensions and tetrahedrons in three dimensions). Asymptotically,

neglecting the boundary effect, for a given set of nodes, the mesh with tetrahedrons contains about seven

times as many edges as the nodes, while the mesh with hexahedra contains only three times as many edges

and the mesh with prisms contains only four times as many edges as the nodes [35].

For the present node-centered scheme based on edge-wise flux computations, the unknowns are stored at

the nodes while the computational cost is directly proportional to the number of edges. If the hexahedra are
introduced locally in the regions where the majority of nodes are located, the total number of edges can be

reduced, thus resulting in CPU time and memory storage savings.

The statistics of the two general hybrid meshes employed are presented in Table 6. The number of edges

is the parameter indicating the overall cost of flux computation based on edge-wise operations, and the

number of faces is an indicator for the velocity gradient computation which involves the face-wise surface

integrals of edge-duals. It can be expected that the computational cost of GHM-2, which contains fewer

edges and faces than the GHM-1, will be less expensive than the GHM-1 even though the GHM-2 has more

nodes.
The CD and CL histories from the flows around a circular cylinder by using the two general hybrid

meshes are presented in Fig. 15. The results using the two hybrid meshes are almost identical in terms

of the hydrodynamics forces exerted on the cylinder. This is important as it provides an indication that

the accuracy of the developed scheme is not affected by the presence of extra interfaces between hexahedra,

pyramids and tetrahedra, as well as extra pyramids in mesh GHM-2.

The performance metrics for the two hybrid meshes are compared in Table 7. The performance is

measured in terms of total computational time and in the maximum memory requirement. The central

scheme is used with modified smoothing based on the solution reconstruction, and the second order
upwind scheme is employed by using Roe�s flux-different splitting scheme. Regardless of the scheme em-

ployed and regardless of the performance metric chosen (CPU time or memory requirement), the

GHM-2 shows about 10% savings over the GHM-1. This is the direct effect of local hexahedra in

the wake region, which results in about 9% of savings in the total number of edges and 18% of savings

in the total number of faces. The savings of computational cost is not only in the CPU time but also in

the amount of memory required.

Since both of the tested meshes are already taking advantage of the local hexahedra, this savings from

local hexahedra in the general hybrid meshes should be much larger when they are compared to the meshes
only with tetrahedrons or conventional hybrid meshes of prisms and tetrahedrons.
Table 6

Characteristics of employed general hybrid meshes

GHM-1 GHM-2

Number of nodes 148,719 158,293

Number of cells 509,269 385,115

Number of edges 749,664 683,563

Number of faces 1,110,214 910,385



Fig. 15. Local hexahedra effect on CD and CL histories. The central difference scheme is used with modified smoothing of r4 = 0.1.

Solid lines are for the GHM-1 with tetrahedra in the wake region, and the dashed lines are for the GHM-2 with hexahedra in the wake

region (Re = 150). Central difference scheme with artificial dissipation of Haselbacher and Blazek, shown in Eq. (21), is used.

Table 7

Performance metrics for the hybrid meshes with and without local hexahedra in the wake region

GHM-1 GHM-2

Central CPU time (s)/Ntotal 0.0328 0.0297

Max. memory (MB)/Ntotal 0.00850 0.00766

Upwind CPU time (s)/Ntotal 0.0420 0.0383

Max. memory (MB)/Ntotal 0.00852 0.00768

CPU time is measured when the simulation reaches Time = 1.0 on 16 processors. Metrics are normalized by the total number of nodes

(Ntotal).
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Fig. 17. Delayed separation and narrowed wake region for flows around a sphere for the higher Reynolds number. Velocity is scaled

by u-velocity magnitude. The medium sphere mesh as shown in Fig. 12 is used. (a) Re = 1000 and (b) Re = 100,000.
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One can observe a deviation of numerical result from the experiments for Reynolds numbers in the

supercritical regime (Re P 100,000). This discrepancy at the supercritical regime is attributed to many fac-

tors, such as surface roughness of the current computation model and mis-prediction of boundary layer

transition by using a relatively simple turbulent model equation. However, it should be noticed that even

the experimental results are very sensitive to surface roughness in the supercritical regime.





Fig. 19. Prediction of delayed separation (accompanied by a smaller wake region) for the higher Reynolds number. Velocity (scaled by

u-velocity) and ~m (the working variable of Spalart–Allmaras turbulence model) plots are taken approximately at the same time step

within a shedding cycle. The turbulent eddy viscosity is defined as ~m ¼ v3

v3þC3
v1
, where v ¼ ~m

mL
, Cv1 = 7.1 and mL is the laminar kinematic

viscosity. The hybrid mesh GHM-1 is used. (a) Velocity (Re = 1000), (b) ~m (Re = 1000), (c) velocity (Re = 100,000) and (d) ~m
(Re = 100,000).
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The parallel communication strategy of the present work is similar to the approach of Tai and Zhao [43]

who used two-dimensional triangular meshes. The main idea of their implementation is overlapping the

interface cells, whose nodes are assigned to multiple partitions. This may look as an overhead of memory

space. However, once an explicit scheme is parallelized on a distributed memory machine, the amount of

memory required for each processor is not the critical issue, but the amount of communication is.

By overlapping the interface cells, the communication amount can be reduced considerably. For the

current scheme, only two steps of node-wise inter-processor communication can be achieved per solution
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update. The first communication is for exchanging the nodal gradients of the solution, which is required for

the solution reconstructions for the artificial dissipation or high order upwind scheme. The second commu-

nication step is for the boundary condition application which is performed after an intra-processor solution

update. Once all the nodal solutions are updated, the solutions at the ghost nodes, which reside at the inter-

processor boundaries, are updated by node-wise inter-processor communication. This overlapping strategy
of general hybrid mesh partitioning is delineated in Fig. 20 in two dimensions. An example of the informa-

tion required for the inter-processor communication is listed in Table 8. Processors store their own com-

munication table which contains lists of nodes for inter-processor communications.

If the interface cells are not overlapped, the inter-processor communication may introduce more steps of

communication as well as extra complexity in the communication strategy. For example, in the overlapping

approach there is no extra communication needed for the viscous flux computation, while in the non-

overlapping strategy there should be extra communications regarding the computation using edge-duals

which lie on the inter-partition boundaries.
According to the partitioning strategy presented in Fig. 20, there is no assumption that each part has to

be contiguous. A completely separate part of the original mesh can be assigned to the same processor, like

an island can belong to a country which is separated by the ocean. This is provides flexibility to a graph

partitioner, which may produce a non-contiguous partitioning.

Each partition has its own local node numbering, and the translation table of the local node number to

the global node number is required for the communications between the neighbors. Once the communica-

tion table is built for all processors, the inter-processor communication can be implemented via a single

loop over the processors.
Fig. 20. Graph partitioning of a two-dimensional hybrid mesh with overlapping interface cells (cells in gray color): (a) original hybrid

mesh with global node numbering, and (b) partitioned hybrid meshes with local node numbering.
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storage without sacrificing accuracy for the wide range of Reynolds numbers (10–106) considered here. Fi-

nally, the developed partitioned mesh data structures for general hybrid grids along with the proposed par-

allel communication technique yielded quite scalable computations.
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